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Abstract—As the popularity of mobile devices continues to
increase, Mobile Crowdsensing (MC), a scalable and efficient data
collection method, has received widespread attention. Although
lots of effort has been devoted to studying the task assignment
or worker recruitment in MC, most of them focus on how to
maximize the profit from the perspective of the platform while
ignoring rational individual workers’ entitlement. We creatively
start from the worker’s perspective to find the task selection
strategy to maximize the worker’s profit. In this paper, the
problem of unknown task selection is modeled as a Multi-Armed
Bandit (MAB), on which three types of additional constraints are
considered. The first constraint is the device budget. Workers
choose and conduct tasks before it is exhausted. The second
constraint is the personal preference regarding the traveling
cost. The third constraint is the balance requirement of the MC
platform, which has regulations on the tasks’ execution rounds.
In addition to the dilemma between exploration and exploitation
in the classical MAB, we have to face the tradeoff between
the reward and all the constraints above. To this end, we first
adopt the epoch-style algorithm to reduce the number of switches
between any two sensing tasks and further build new algorithms
to deal with different constraints. The traveling cost and platform
balance are involved in the task index computation as a penalty.
We conduct extensive simulations based on real-world traces to
verify the significant performance of our proposed algorithms.

Index Terms—multi-armed bandits, mobile crowdsensing, task
selection, device budget, preference, balance

I. INTRODUCTION

Mobile Crowdsensing (MC) [1]–[5] has become a com-
petitive public data collection method with the development
of mobile smart devices and their embedded sensors, which
often can sense, calculate, and transmit data. The MC platform
recruits specific workers to conduct sensing tasks, through
which it can collect data and finally realize the purpose
of data analysis or application, such as Waze [6], Amazon
MechanicalTurk [7], etc.

In the MC system, three directions are the most critical:
task assignment [8] or worker recruitment [9], incentives
design [10], and privacy protection [11]. However, most of the
existing studies neglect workers’ entitlement. In such a case,
the individual worker might be unwilling to participate as a
selfish and rational person in the MC process. In this paper,
we focus on the task selection problem from the perspective
of an individual worker, and the MC process is shown in
Fig. 1. The MC platform publishes a set of location-based
sensing tasks within a specific geographic area and informs

Fig. 1. Illustration of MC process from the perspective of a worker.

workers to select and execute tasks. The worker carrying the
smart device will go to the location of a particular task and
collect the required data, return it to the platform, and then
get the corresponding reward. Note that the traveling cost will
be generated because of workers’ movements when switching
tasks. In the MC system, time is slotted, and we use the term
“round” to denote the time slot. At the beginning of each
round, the worker should select one task to execute and then
go to the location to conduct it. In this paper, we concentrate
on how to design efficient task selection strategies to assist
these workers in demand.

Most existing researches [8], [12] assume that the reward
information for completing tasks is known in advance and
believe that there is no traveling cost when switching tasks.
We consider a more practical situation in which the reward
information of all the tasks follows an unknown distribution.
Additional, each time the worker switches from one task to
another, the movement will certainly produce the traveling
cost. In this case, maximizing the worker’s total profit (i.e.,
the difference between the total achieved reward and the total
traveling cost) has become our focus.

Since the workers are unaware of the corresponding reward
information for the tasks, we adopt the reinforcement learning
technique [13] to learn it. We further consider the possible
constraints: 1) each device is always equipped with quantita-
tive resources, which means the total resources consumed by
the device when conducting tasks cannot exceed its budget
capacity; 2) when the worker switches from one task position
to another, the traveling cost is produced due to position
transfer; 3) the MC platform also requires workers to meet



a certain balance in execution rounds. The term “balance”
means that the platform wants to avoid the situation in which
some sensing tasks are over-executed while the others are
under-executed. In practical scenarios, the above constraints
must be considered because resource-exhausted devices can’t
help with task execution, and a worker’s task selection is
inevitably affected by the platform’s requirements and his
distance to the task. We model the problem as a constrained
Multi-Armed Bandit (MAB). The worker must deal with the
dilemma between exploitation (i.e., selecting the task with the
highest empirical reward so far) and exploration (i.e., trying
other tasks to discover the potentially optimal task), and face
the trade-off between the reward and the three constraints.
Note that our optimization goal is to maximize the total profit
of a worker, which is somewhat different from the goal of the
traditional MAB problem (maximize the total reward).

Only a few studies [14]–[16] have combined the MAB
model with the MC process in which the reward information
for task completion is unknown. For instance, [14] focuses on
worker recruitment under a limited budget to maximize task
completion quality. Reference [15] proposes a MAB-based
worker recruitment framework to address the issues of lacking
prior knowledge about workers’ quality and tasks’ ground
truth in spatial crowdsourcing. All these researches have the
problem of ignoring workers’ rights and failing to consider
the actual constraints fully. To bridge this gap, we focus on
protecting individual workers’ rights and dealing with actual
constraints effectively. That is, we consider the task selection
problem under various constraints from a worker’s perspective.

Intuitively, to maximize the worker’s profit, the worker
should maximize the total reward while minimizing the total
traveling cost. The epoch-style algorithm (such as the UCB2
algorithm [13]) where all rounds are divided into many epochs
with increased sizes is suitable to solve our problem. At the
beginning of each epoch, the worker will select a sensing task
according to a pre-established standard, and then conduct it
in the whole epoch (multiple rounds). In this way, the worker
can reduce the number of task switches to decrease the total
traveling cost. Now, the focus is on how to establish a selection
standard. We first adopt the Upper Confidence Bound (UCB)
to denote the UCB-based reward for all sensing tasks; then,
we use the ratio of the UCB-based reward and the average
resource consumption as the selection standard. Next, we con-
sider the traveling-cost-related preference of the worker and
balance requirement of the platform in the index computation.
We design a preference-aware task selection algorithm and a
balance-aware task selection algorithm, respectively.

We highlight the main contributions as follows:
• We break away from the inherent research framework

from the perspective of the MC platform and design
a task selection mechanism that seeks to maximize a
worker’s total profit. This perspective supplements the
missing angles in the previous state-of-the-art work on
mobile crowdsensing.

• We adopt the epoch-style strategy for our problem. We
first apply the ratio of the UCB-based reward and the

average resource consumption in the computation of the
index for each task, and then take the traveling-cost-
related preference as a penalty into the index computation
and devise another algorithm.

• We view the MC process not just in isolation from a
worker’s perspective, but also consider the platform’s
requirements. That is, workers should meet the platform’s
expectation for the number of rounds of task execution
(called balance). We adopt virtual queue technology and
propose an extended algorithm on the basis.

• We conduct extensive simulations based on real-world
traces to evaluate the significant performance of the
proposed algorithms under various constraints.

The remainder of the paper is organized as follows. We
first present the system model and the optimization problem
in Section II. Next, we adopt the epoch-style algorithm for
the task selection problem in Section III. We further devise
a preference-aware algorithm in Section IV and a balance-
aware algorithm in Section V. In Section VI, we evaluate the
performance of our algorithms. After reviewing the related
work in Section VII, we conclude the paper and discuss future
research directions in Section VIII.

II. MODEL & PROBLEM FORMULATION

A. System Model
We consider a mobile crowdsensing system consisting of a

platform and many workers. Our goal is to design available
strategies for an individual worker to select tasks. Suppose
that every worker in the MC system is rational and selfish.
The worker always wants to take action solely to maximize
his profit under a certain device budget. Since the reward
information is unknown, each worker must learn it during the
process of conducting tasks. In such settings, the worker might
fall into the dilemma between exploitation and exploration
as studied in the MAB model. Note that our model differs
from the traditional MAB model due to the constraints of
the device budget and the traveling cost. Here, the device
budget is a value that reflects the total number of all the
limited resources that a smart device can use. It should be
considered because some resources will be consumed when
the worker conducts the sensing tasks, such as battery energy.
The traveling cost indicates the price when switching from
one task to another and must be considered because sensing
tasks are always bound to specific locations in the MC system.
We reasonably believe that the traveling cost depends on the
distance between two sensing tasks. The goal of the worker is
to maximize the total profit under specific constraints. In the
MC system, we suppose that the resource consumption of the
device is negligible when switching tasks.

Let t denote the time slot (called “round”). In each round, a
worker can choose only one task to conduct, and the execution
time for each task is equal. Based on this, we stipulate the loca-
tion and reward information about sensing tasks. Consider that
there are total m heterogeneous location-based sensing tasks
distributed in the urban area. Let S = {s1, · · · , si, · · · , sm}
denote the set of sensing tasks. The term “heterogeneous”



means that the reward and resource consumption of conducting
these tasks are different. The term “location-based” shows that
a worker must go to a specific location to conduct one task.
For each task si, we use li ∈ L to denote its location, and all
discrete locations form L. We let lti denote the location of the
worker in round t when he conducts the task si in li.

In this paper, the unknown tasks are taken into consideration
in the MC system; “unknown” means that the worker has
no knowledge about the reward information of tasks. We
use a normalized nonnegative random variable rti ∈ (0, 1]
to denote the reward of the worker completing the task si
in the t-th round. For ∀si ∈ S, {r1i , r2i , · · · , rti , · · · } follows
an unknown independent and identically distribution with an
unknown expectation ri. Moreover, if the worker does not
select the task si ∈ S in round t, we have rti = 0; else, after
the worker completes the task i, the reward rti will be revealed.
At the same time, when the worker conducts the sensing task
si in round t, the resource consumption is determined and
is denoted as bti. For ∀si ∈ S, {b1i , b2i , · · · , bti, · · · } follows
an unknown independent and identically distribution with an
unknown expectation bi. Here, the value of bti is normalized
into the range (0, 1]. We use the notation B to denote the
limited device budget value. The stop condition of a worker’s
task selection process is that the tasks no longer need to
be conducted or the required device resources exceed the
remaining device budget. Due to the limited device budget B,
the task selection round for the worker is finite. Assume t(B)
denotes the finite time. We consider that the device budget B
is sufficient to support a worker to complete all the tasks at
least once.

Our next focus is the notation of the traveling cost between
any two tasks in the MC system. When a worker completes
his current task si, he will have two choices: 1) still selecting
the same task; 2) switching to another task (e.g., sj ∈ S). In
the first case (i.e., lt−1

i → ltj , where i= j) , the worker does
not need to travel, so no traveling cost is generated. While
in the second case (i.e., lt−1

i → ltj , where i ̸= j), the worker
must travel from li to another location lj to conduct the task
sj . This traveling process will inevitably result in some extra
cost, called traveling cost. Let cij denote the traveling cost
from li to lj , positively correlated with the distance between
tasks. We consider that traveling costs are symmetric, that is,
cij = cji and cii = 0. For simplicity, the values of traveling
cost are mapped into the interval [0, 1].

B. Problem Formulation
In the MC system with location-based unknown sensing

tasks, a worker’s goal is to maximize his total profit under the
device budget B after considering the traveling cost. We can
regard the above problem as an online learning problem, model
it with a multi-armed bandit under device budget constraint,
and combine the above notations to formulate the optimization
goal as follows:

Maximize : E
[t(B)∑
t=1

(
∑
si∈S

rti ·Iti−
∑

si,sj∈S
cij · It−1

i ·Itj)
]

(1)

TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
m the number of sensing tasks.
t the index for rounds (time slots).
si, S the indexes and the set of all sensing tasks.
li, L the location of si and the set of all locations.
B the device budget.
Bt the remaining device budget till round t.
bi the resource consumption distribution’s mean of si.
bti the resource consumption of si in round t.
bi(t) the average resource consumption of si till round t.
t(B) the total rounds under the device budget B.
ri the reward distribution’s mean of si.
rti the reward of conducting si in round t.
ri(t) the average reward of si till round t.
cij the cost of the worker traveling from li to lj .
Ri(t) total rounds of si conducted till round t.
Ei(t) total epochs of si conducted till round t.
pij(t) the penalty of traveling-cost-related preference be-

tween si and sj in round t.
ei the expected minimum execution fraction of si.
ϱ1, ϱ2 the balance parameters in (14) and (17).
Qi(t) the virtual queue length of Qi in round t.

Subject to : cij = 0 for lt−1
i → ltj where i = j (2)

t(B)∑
t=1

∑
si∈S

Iti · bti ≤ B (3)∑
si∈S

Iti = 1 for ∀t ≥ 1 (4)

Iti ∈ {0, 1} for ∀t ≥ 1, si ∈ S (5)

Assume Iti for ∀t ≥ 1, si ∈ S denotes the decision variable,
where Iti = 1 means that the worker will conduct the task si in
round t; otherwise, Iti = 0. This reflects (5), which means that
at the same time, any task only has two states to be executed
and not executed.

Besides, (2) means that no traveling cost is generated when
the worker does not change his selected sensing task in
two consecutive rounds. Equation (3) denotes that the total
consumed resource cannot exceed the limited device budget,
and (4) indicates that in each round, only one task is conducted
by the worker.

III. DESIGN OF EPOCH-BASED ALGORITHM

A. The Constraint on Device Budget
In the MC system, workers are equipped with specific smart

devices to complete sensing tasks. Therefore, the possible
constraints of smart devices cannot be ignored. Since the
device consumes some non-reusable resources in conducting
tasks, a device budget B always exists. In task selection and
execution, the device budget is continuously consumed. After
B is exhausted, the worker will no longer be able to select
and execute tasks. The device budget has the following two
fundamental properties.

First of all, when workers conduct tasks, the resource
consumption of the device is random. Battery energy is an
excellent example to illustrate this property. Many different



Algorithm 1 Epoch-Based Solution (EBS) for Task Selection
Require: α, S, B, and cij for ∀si, sj ∈S

1: for t = 1 : m do
2: The worker conducts the task it = st, and gets rti .
3: Update: ri(t), bi(t), Ri(t), Ei(t).
4: end for
5: Let t⇐m+1, Bt=B−

∑m
k=1 b

k
k.

6: while true do
7: Select the task with the highest ratio in (10),

inow = argmax
si∈S

(
(ri(t)+

√
(1+α) ln( et

⌈τ(Ei(t))⌉
)

2⌈τ(Ei(t))⌉ )/bi(t)
)

.

8: Calculate the epoch length for the selected task inow,
l(τ)=⌈τ(Einow(t) + 1)−τ(Einow(t))⌉.

9: Let T ⇐ t+l(τ).
10: while t≤T do
11: Bt ⇐ Bt − btinow

.
12: if Bt ≤ 0 then
13: Terminate.
14: end if
15: Go to the location of inow, conduct it for one round.
16: t ⇐ t+ 1.
17: Update: ri(t), bi(t), Ri(t), Ei(t), r̂i(t).
18: end while
19: end while

factors work together to cause random energy consumption of
the battery. For example, the factors include not only the type
and number of sensors required to conduct sensing tasks but
also the local network conditions. The unpredictability of these
factors brings difficulties to qualitatively and quantitatively
regulating battery energy consumption. The randomness of
device resource consumption can be intuitively derived from
the randomness of battery energy. Second, we believe that the
resource consumption of the device only takes place in the
process of conducting tasks. In the process of position transfer,
the resource consumption of the device can be ignored.

For conducting any task si, the resources consumed by the
device in different rounds follow a specific distribution. This
distribution is unknown to the workers and needs to be learned
through the task execution process. Let bi denote the expected
mean of the resource consumption distribution for a particular
task si. Let bti denote the resource consumption of executing
the task si in round t, and this value lies in the interval (0, 1].

Assuming that we only focus on maximizing the worker’s
reward, it is very likely that we will end the process of
executing tasks early due to insufficient resources. Assuming
that we only blindly conduct tasks that consume the least
amount of resources, our cumulative reward may be small,
contrary to our prescribed workers’ rational characteristics.
Therefore, the basic solution will be our focus.

B. Basic Solution
Unlike the traditional MAB problem, which only deals with

the dilemma between exploration and exploitation, we must
also face the trade-off between the reward and traveling cost.

It is worth noting that although some tasks are well rewarded,
they may not be the best choice because the traveling cost to
move there from the worker’s current location may be high.

To this end, we intend to design a selection strategy to
maximize the total profit of the worker by maximizing the
total reward and minimizing the total traveling cost. The UCB
strategy has good reward performance in a dilemma between
exploration and exploitation. At the same time, to minimize
the total traveling cost, we should try to reduce the number
of times the worker switches sensing tasks. The epoch-based
strategy (e.g., the UCB2 algorithm) is suitable here. However,
it does not involve the device budget constraint during the
task selection process. Therefore, we adopt the idea of epoch
introduced by the UCB2 algorithm and took the resources
consumed by the device into consideration when devising a
new index computation for selecting tasks.

We first introduce the exponential function to help to
determine the length of an epoch, as follows:

τ(x) = (1 + α)x, (6)

where 0<α<1 is a parameter.
Then, we let Ri(t) and Ei(t) for ∀si ∈ S denote the

numbers of rounds and epochs with which the sensing task
si is conducted up to round t, respectively. According to this,
the length of the epoch during which the task si would be
conducted is defined as follows:

l(τ) ≤ ⌈τ(Ei(t) + 1)− τ(Ei(t))⌉. (7)

The impact of the device budget constraint on task execu-
tion cannot be ignored when calculating the epoch’s length.
Suppose the resources of the device carried by the worker
are exhausted before the current epoch ends. In that case,
the current epoch should be terminated immediately, and the
inequality relationship in (7) holds.

How to determine the sensing task at the beginning of
each epoch becomes our next focus. Assume ri(t) denotes
the average reward of conducting the task si up to the round
t, which is calculated as follows:

ri(t) =
(∑t

k=1
rki · Iki

)
/Ri(t). (8)

Let r̂i(t) including the average reward ri(t) and an adjust-
ment item denote the UCB-based index for each sensing task
si up to the round t, i.e.,

r̂i(t) = ri(t) +

√
(1 + α) ln( et

⌈τ(Ei(t))⌉ )

2⌈τ(Ei(t))⌉
, (9)

where e is the mathematical constant and the parameter α
is less than 1. The adjustment item is used to increase the
selection probability of rarely chosen tasks.

The selection strategy is to always select the task with
the highest ratio of the UCB-based reward and the average
resource consumption at the beginning of each epoch. For
simplicity, we let inow denote the index of the selected sensing
task in the first round t of the current epoch. That is, we have:

inow = argmaxsi∈S r̂i(t)/bi(t), (10)



where bi(t) means the average resource consumption of con-
ducting the task si until round t.

C. Detailed Algorithm
According to the above solution, we propose the epoch-

based algorithm (i.e., Epoch-Based Solution for Task Selec-
tion, EBS) for the worker, as shown in Alg. 1.

In Steps 1-4, the worker will conduct all tasks once to
initialize the value of ri(t). When the total resource con-
sumption does not exceed the limited device budget B, the
worker will select one task to conduct in Steps 6-19. More
specifically, at the beginning of each epoch, the worker selects
the sensing task according to the ratio of the UCB-based
reward and the average resource consumption, then computes
the epoch’s length in Steps 7-8. After task selection, the worker
must compare the resources they continuously need with the
remaining budget in each round of the current epoch. The
task selection algorithm will terminate if the remaining budget
cannot cover the resource consumption, as shown in Steps 11-
14. Otherwise, the worker would go to the specific location
of the selected task and conduct it in Step 15 until the end
of the current epoch. The corresponding information and the
remaining device budget are updated in Steps 11, 16-17.

EBS combines the UCB-based reward and the heteroge-
neous resource consumption, so it is quite challenging to ana-
lyze the specific regret bound. When the resource consumption
for all sensing tasks is uniform, e.g., bti = 1 for ∀si ∈ S and
∀t ≥ 1, the task index computation in EBS is the same as that
in the UCB2 algorithm. In such case, the regret performance
is analyzed in [13], which is stated as follows:∑

i:∆i>0

(φ1 ln(2eB∆2
i )

2∆i
+
φ2

∆i

)
, (11)

where


φ1=(1 + α)(1 + 4α),

φ2=1+
(1 + α)e

α2
+
(1 + α

α

)1+α(
1+

11(1+α)

5α2 ln(1+α)

)
.

and ∆i means the reward difference between the optimal task
si∗ which has the highest mean reward and the i-th sub-
optimal task si, i.e., ∆i = ri∗ − ri. Note that the bound
for reward regret holds for the certain condition, that is,
B ≥ maxi:∆i>0

1
2∆2

i
. Because our objective is to maximize

the worker’s profit, the regret in our problem consists of two
parts: the reward loss (due to unknown reward distribution)
and the traveling cost loss. Here, (11) shows the reward loss.
The traveling cost loss depends on the number of switches
among all sensing tasks. In future work, we will try to give
the specific regret bound of EBS.

IV. PREFERENCE-AWARE ALGORITHM
A. The Constraint on Preference

In the paper, we assume that workers are rational and selfish,
which means that their decision-making process serves to
maximize the personal profit. However, in actual situations, the
connotation of personal preferences will be more complicated.
For this reason, we reasonably consider that the worker has
two types of preferences except for rationality: 1) no matter
where the worker is currently located, he hopes that the
location of the next task to be conducted is closer to the current

Algorithm 2 Preference-Aware Solution (PAS)
Require: α, S, B, ϱ1, and cij for ∀si, sj ∈S

1: Initialization: Go to the location of each task and conduct
it for one round. Update related information.

2: while true do
3: Select the task with the highest value in (14),

inow=argmaxsi∈S

(
r̂i(t)/bi(t)−ϱ1pioldi(t)

)
.

4: Calculate the epoch length for the selected task inow,
l(τ)=⌈τ(Einow

(t) + 1)−τ(Einow
(t))⌉.

5: Go to the location of inow, conduct it and update related
information until the l(τ)-th round when Bt ≥ 0,
otherwise terminate.

6: end while

location, and 2) no matter what tasks the worker has conducted
before, he hopes that the next task to be conducted corresponds
to as many execution rounds as possible so that the worker can
avoid frequent movements.

Combining the above analysis, we make the following two
assumptions. First, for one task, the higher the traveling cost
required to transfer from the current task to it, the less willing
the worker is to conduct it. Second, the more the execution
rounds of the selected task, the more the worker intends to
conduct it to avoid switching positions for a longer time.

Therefore, when computing the index for each sensing task
at the beginning of each epoch, the worker should subtract
the traveling-cost-related preference penalty from the UCB-
based index. Note that the penalty related to one task is highly
associated with the traveling cost from the worker’s current
location and correlated to the number of possible execution
rounds. Here, we let βi denote the number of execution rounds
of task si when it was selected last time. According to the
definition of the epoch, the number of corresponding rounds
should have a non-decreasing nature. Therefore, βi can reflect
the execution round of si when chosen next time. Based on
this, we define the penalty regarding the traveling-cost-related
preference constraint, denoted as pij(t), as follows:

pij(t) =
cij
βj

, for ∀si, sj ∈ S. (12)

Excessive task switching will lead to the accumulation of
total traveling cost and the decrease of total profit, whereas
always conducting tasks within a small geographic area will
damage the total reward for the worker. Therefore, we intro-
duce a basic solution to make a trade-off between the reward
and the traveling cost.

B. Basic Solution
Because of the traveling-cost-related preference constraint,

the following adjustment should be made to the index calcu-
lation when selecting tasks based on the above definition. Let
si denote the current sensing task that the worker conducts in
round t−1, i.e., it−1 = si. We define a new index for all tasks
in round t, denoted as r̃j(t), that is:

r̃j(t) =

{̂
rj(t)/bj(t); j = i,

r̂j(t)/bj(t)− ϱ1 ·pij(t); j ̸= i,
(13)



where r̂j(t) = rj(t)+

√
(1+α) ln( et

⌈τ(Ej(t))⌉
)

2⌈τ(Ej(t))⌉ means the UCB-
based reward and the parameter ϱ1 > 0 is used to balance
r̂j(t)/bj(t) and penalty related to the preference.

In this way, the worker will have more incentives to stay in
the same place so that the number of switches among sensing
tasks will be decreased. For simplicity, we let iold denote the
selected sensing task in the last epoch. Based on this, we focus
on how to select the task in the current epoch (i.e., inow). inow
is determined as follows:

inow=argmaxsi∈S

(
r̂i(t)/bi(t)−ϱ1pioldi(t)

)
. (14)

According to the above solution, we propose the preference-
aware algorithm (i.e., Preference-Aware Solution for Task
Selection, PAS) for the workers, as shown in Alg. 2. In Step
1, the worker goes to each task’s location and conducts it
for one round, through which the task-related information
is initialized. Then, the execution of tasks is no longer in
the round unit but in the epoch unit. In the first round of
each epoch, the worker selects a task according to (14) and
calculates the appropriate epoch length, as shown in Steps 3-4.
Then, in Step 5 the worker goes to the location of the task
inow and executes it continuously. When the current epoch
ends, the worker will re-select a task to conduct and start a
new epoch. If the device budget is exhausted, the algorithm
will terminate regardless of whether the current epoch is over.

C. A Walk-through Example
We present a walk-through example to show the task

selection procedure to help understand PAS.
Suppose that there are 3 sensing tasks in the MC system

and the device budget is B=10. We consider that the rewards
of each task follow the uniform distribution and in (0, 1], and
the expected rewards are r1=0.3, r2=0.5, r3=0.7. Assume
that the traveling costs between tasks follow c12 = c21 =0.6,
c13=c31=0.3, and c23=c32 =0.9. For simplicity, we let the
resource consumption per round for all tasks be the same, i.e.,
bti=1 for ∀si∈S and ∀t ≥ 1. Finally, let α=0.5, ϱ1=1.

The rewards of tasks in each round are shown in Fig. 2.
We assume that the initial location of the worker is l1. In the
initial phases of PAS, the worker will select each task once
in the first three rounds. The revealed rewards in each round
are marked in blue. Here, the average empirical rewards are
initialized. Note that now we let Ei(t)=1 for 1≤ i≤3.

In the next phases, the rounds are divided into epochs. At
the beginning of the first epoch, we have t=4 now, and the
worker’s current location is l3. Based on this, the following
values can be calculated according to (14).

r̂1(t)/1−p31(t)=0.2+

√
1.5 ln(4e/2)

2 ∗ 2
− 0.3

1
=0.697;

r̂2(t)/1−p32(t)=0.5+

√
1.5 ln(4e/2)

2 ∗ 2
− 0.9

1
=0.397;

r̂3(t)/1−p33(t)=0.8+

√
1.5 ln(4e/2)

2 ∗ 2
− 0.0

1
=1.597.

Fig. 2. A walk-through example for the task selection procedure.

Thus, in the current epoch, the worker would select the task
s3. Next, the worker will compute the length of the epoch, that
is, l(τ)=⌈1.52−1.51⌉=1. After the worker conducts the task
s3, its reward is revealed in Fig. 2, i.e., r43 = 0.7. We will
update the information, such as t = 5, Bt = 6, E3(t) = 2,
and r3(t) = 0.75. Then, the process continues:

r̂1(t)/1−p31(t)=0.2+

√
1.5 ln(5e/2)

2 ∗ 2
− 0.3

1
=0.748;

r̂2(t)/1−p32(t)=0.5+

√
1.5 ln(5e/2)

2 ∗ 2
− 0.9

1
=0.448;

r̂3(t)/1−p33(t)=0.75+

√
1.5 ln(5e/3)

2 ∗ 3
− 0.0

1
=1.365.

Since r̂3(t)/1−p33(t) has the largest value at this moment,
the worker will still select the task s3 in the next epoch. The
length of the epoch is l(τ)=⌈1.53−1.52⌉=2. Thus, the worker
will conduct the task s3 in the next 2 rounds, as shown in Fig.
2. The following procedures are omitted and the algorithm
terminates when Bt≤0.

V. BALANCE-AWARE ALGORITHM

A. The Constraint on Balance
The MC system hopes to avoid the scenario where some

tasks are over-executed, but others may be under-executed.
If some tasks are over-executed, the platform will receive
redundant data. For the platform, this type of data has two
main types of defects. First, they cannot increase the validity
of data and may even bias the information and conclusions
finally obtained by the platform. Second, when workers pass
back redundant data, the platform needs to pay for them. The
platform also needs to pay more data storage and processing
costs. If some tasks are not conducted adequately, the relevant
information involved in the collected sensing data is not
comprehensive, leading to unreasonable decision-making. For
the publisher of tasks, although the fewer data collected, the
less reward he needs to pay, these reduced payments cannot
make up for the lack of information collected and the loss of
erroneous conclusions.

In summary, the MC platform has certain data requirements,
and we need to convert them into a specific constraint. We
introduce a parameter ei to denote the required minimum
fraction of rounds in which the worker would conduct the
task si. We can formalize the balance constraint as follows:

lim inf
B→∞

E[Ri(t(B))] ≥ t(B)·ei, for ∀si ∈ S, (15)

where t(B) means the total executable rounds under the device
budget B and Ri(t) is the total rounds of si being conducted
until round t. Equation (15) shows that the MC platform hopes



Algorithm 3 Balance-Aware Solution (BAS)
Require: α, S, B, ϱ1, ϱ2, ei and cij for ∀si, sj ∈S

1: Initialization: Go to the location of each task and conduct
it for one round. Update related information.

2: while true do
3: Select the task with the highest value in (17),

inow=argmaxsi∈S

(
r̂i(t)/bi(t)−ϱ1·pioldi(t)+ϱ2·Qi(t)

)
.

4: Calculate the epoch length for the selected task inow,
l(τ)=⌈τ(Einow

(t) + 1)−τ(Einow
(t))⌉.

5: Go to the location of inow, conduct it and update related
information until the l(τ)-th round when Bt ≥ 0,
otherwise terminate.

6: end while

that for any task si, the ratio of the actual execution rounds
to all tasks’ total rounds can reach its desired value ei.

Here, we suppose that there exists at least one task selection
solution so that the balance constraint can be satisfied. The
MC system would tell the worker their required minimum
fraction of rounds ei for ∀si∈S in advance. After considering
the balance during the process of task selection, the extended
problem becomes more complicated. The other settings are
still the same as those in Section II-B.

B. Solution to the Balance Constraint
To solve the balance constraint, we apply the concept of

the virtual queue [17] to handle it. More specifically, we first
use Qi to denote the virtual queue for the task si and then
let Qi(t) denote the queue length of Qi in round t. Note that
we initialize Qi(0)=0 for ∀si∈S , and then Qi(t) should be
updated as follows:

Qi(t) = max
{
0, Qi(t− 1) + ei − I{it−1= i}

}
, (16)

where I{true}=1, I{false}=0 and it represents the index for
the sensing task which is conducted in the t-th round.

Based on the virtual queue technique, we design a new task
selection algorithm. We still adopt the same definition of epoch
to reduce the number of switches among sensing tasks. The
difference lies in the computation of the index at the beginning
of each epoch. Concretely speaking, the computation of the
index will involve the virtual queue length to address the
balance constraint. That is, at the beginning of each epoch,
the worker would choose the sensing task according to

inow=argmax
si∈S

(
r̂i(t)/bi(t)−ϱ1 ·pioldi(t)+ϱ2 ·Qi(t)

)
,(17)

where r̂i(t) means the UCB-based reward, bi(t) denotes the
average resource consumption of si, and pioldi(t) indicates the
preference penalty of switching tasks. Also, ϱ2>0 denotes the
controlling parameter, which is used to manage the weight of
the virtual queue length in task selection.

Based on the above solution, we propose the balance-aware
algorithm (i.e., Balance-Aware Solution for Task Selection,
BAS), as shown in Alg. 3. Except for the index calculation
at the beginning of each epoch, the extended algorithm has

TABLE II
EVALUATION SETTINGS

parameter name default range
device budget B 106 105 − 107

number of tasks m 100 50-200
parameter α 0.1 0.01-1
parameter ϱ1 0.1 0.1-1
parameter ϱ2 0.1 0.1-10
parameter ϵ 0.5 0.1-0.5

the same structure as PAS. Since the optimization goals of
the platform and the worker are to maximize their profits,
conflicts are bound to exist. This means that if the worker is
constrained by the platform when choosing tasks, his interests
will be harmed.

VI. PERFORMANCE EVALUATION

A. Evaluation Methodology

The performance of the proposed algorithms is evaluated
based on the real-world traces called Roma-taxi. It contains
the GPS coordinates (longitude and latitude) and the corre-
sponding ID of approximately 320 taxi cabs collected over
30 days in Roma, Italy. The positions of the taxi cabs are
collected every 7 seconds.

First of all, we stipulate that the tasks are constant in a
complete execution process. We select m∈{50, 100, 150, 200}
GPS coordinates in the central area of Roma and regard them
as the locations of m different tasks. Then, we generate the
information about the reward, the resource consumed, and the
traveling cost. We use the times of all taxi cabs visiting the
specific location to generate the task’s expected reward (i.e.,
ri) and let the distance between the two locations generate
the traveling cost. All the reward and resource consumption
values are mapped into (0, 1], and traveling cost values are
mapped into [0, 1]. Since the latitude and longitude values in
the trace data can directly generate a distance in [0, 1], we
directly use them as the traveling costs. All the values of
reward and the resource consumed in each round are generated
in the Gaussian Distribution. When generating the values of
reward and resource consumed per round, the mean of the
Gaussian Distribution is ri and bi respectively, while the
standard deviation is generated randomly in the range (0, 1].

We present regulations for the parameters of the various
algorithms proposed in the paper. The value of α can be chosen
from (0, 1), and it was set to be 0.1 by default. Moreover, the
values of ϱ1 in our algorithms are selected from {0.1, 0.3, 0.5}
and ϱ2 are selected from {0.1, 0.5, 1, 10}. Additionally, some
other parameters are displayed in Table II.

The algorithms we propose are designed for workers in
the MC system and used to solve an optimization problem
in an online scenario with multiple constraints. To measure
the effectiveness of the algorithms, we use the total profit as a
metric to evaluate the optimization performance. In addition,
since the PAS considers the traveling cost of switching tasks
when selecting tasks, we need to combine the total traveling
cost with the total profit as the metric for evaluating it. When
selecting tasks, the BAS considers the platform’s requirement
to balance each task’s number of rounds of execution. There-



(a) Total profit vs. m (b) Total profit vs. B
Fig. 3. Total profit of EBS under different parameters m and B.

fore, when showing the algorithm’s performance, each task’s
execution rounds will also become our focus.

Finally, we present the compared algorithms in our sim-
ulations. We first implement the offline algorithm based on
the known parameters ri and bi for ∀si ∈ S. In the offline
algorithm, the worker always selects the sensing task with
the highest return rate on resources (the ratio of the expected
reward and the expected resource consumption) in each round.
We then borrow the basic strategy in the famous ϵ-first
algorithm for comparison. Concretely speaking, in our model
settings, the worker would randomly select one sensing task to
conduct when his cumulative consumption of resources does
not exceed ⌈ϵ·B⌉. In the following rounds, where the worker’s
remaining device budget is less than B−⌈ϵ·B⌉, he would always
select the task with the highest estimated rate of return on
resources. In the simulations, the value of ϵ is selected from
the set {0.1, 0.3, 0.5}.

B. Evaluation Results
We first display the evaluation result of EBS based on the

real-world traces. To investigate whether the difference in the
number of tasks will affect the performance of EBS, we let
the total number of tasks in the MC system change when
other parameters such as the device budget remain unchanged.
We take m from {50, 100, 150, 200} and observe the achieved
total profit by EBS. The offline algorithm and the ϵ-first
algorithm are the comparison algorithms to EBS. When the
number of tasks is different, as shown in Fig. 3(a), we find that
even though the achieved total profit by EBS cannot surpass
the offline algorithm of known task-related information, it is
always better than the ϵ-first algorithm. With the increase of
m from 50 to 200, the achieved total profit does not have an
apparent trend because the reward distributions of the tasks
are not intrinsically related. We also examined whether the

(a) Total traveling cost vs. m (b) Total traveling cost vs. B
Fig. 4. Total traveling cost of PAS under different parameters m and B.

TABLE III
COMPARISON OF PAS AND EBS UNDER DIFFERENT TASK NUMBERS

task number m metrics PAS(0.1) PAS(0.3) PAS(0.5)

50 traveling cost -40.40% -54.91% -60.98%
total profit +0.10‰ +0.14‰ +0.16‰

100 traveling cost -42.24% -55.02% -61.68%
total profit +0.05‰ +0.07‰ +0.08‰

150 traveling cost -47.22% -60.80% -66.44%
total profit +0.08‰ +0.11‰ +0.12‰

200 traveling cost -47.29% -60.30% -65.55%
total profit +0.08‰ +0.10‰ +0.13‰

The table shows the comparison results of PAS with different values of ϱ1 and
EBS under different task numbers in specific metrics.

TABLE IV
COMPARISON OF PAS AND EBS UNDER DIFFERENT DEVICE BUDGETS

device budget B metrics PAS(0.1) PAS(0.3) PAS(0.5)

105
traveling cost -43.74% -57.67% -62.73%
total profit +0.78‰ +1.00‰ +1.10‰

106
traveling cost -47.74% -60.52% -66.58%
total profit +0.21‰ +0.25‰ +0.30‰

107
traveling cost -43.87% -58.89% -63.71%
total profit +0.006‰ +0.010‰ +0.011‰

The table shows the relative differences of PAS with different values of ϱ1
compared with EBS in specific metrics under different device budgets.

difference in device budget will affect the performance of EBS.
Observing Fig. 3(b), we find that when the device budget takes
value from {105, 106, 107}, the total profit obtained after task
selection based on EBS is significantly greater than that based
on the ϵ-first algorithm. Our observation results show that EBS
has significantly better results than the ϵ-first algorithm.

Furthermore, we focus on PAS which considers the worker’s
preference when selecting tasks. Let ϱ1 take value from
{0.1, 0.3, 0.5} in our simulations, reflecting the weight of the
traveling-cost-related preference. We also examine the perfor-
mance of the proposed algorithm from the two dimensions
of the number of tasks and the device budget. As shown
in Fig. 4(a), when the task number takes different values,
compared to using EBS for task selection, using PAS can
effectively reduce the total traveling cost. With the increase of
ϱ1, the reduction in total traveling cost is even more significant.
Combining Table III, we find that while the total traveling
cost is reduced, the total profit will slightly increase. Fig. 4(b)
and Table IV show that PAS can effectively reduce the total
traveling cost and increase the total profit in the case of
different device budgets. And as ϱ1 increases, the traveling
cost and total profit will change more widely. The above
experimental results align with our intuition that the greater the
weight of the worker’s preference, the more likely the worker
is to conduct tasks closer to him. Therefore, the total traveling
cost is reduced. We believe that PAS has higher usability in
scenarios where the traveling cost between tasks is high.

Last, we focus on the evaluation of BAS which involves the
balance constraint of the MC platform. Let ϱ2, which repre-
sents the weight of balance, take a value from {0.1, 0.5, 1, 10}
and then use BAS with different ϱ2 as the task selection
strategy. We observe the number of rounds of each task’s
execution under different strategies. As shown in Figs. 5-8,
with the increase of ϱ2, the line composed of different tasks’
execution rounds gradually tends to be flat. Table V shows
the task execution results under BAS with different ϱ2. We
use three metrics to measure the algorithm’s effectiveness: the



Fig. 5. Execution rounds (ϱ2 = 0.1) Fig. 6. Execution rounds (ϱ2 = 0.5)

Fig. 7. Execution rounds (ϱ2 = 1) Fig. 8. Execution rounds (ϱ2 = 10)

maximum of the execution rounds, the range of the execution
rounds, and the success rate. The meaning of these metrics is
shown in Table V. We compare the simulation results based
on BAS with the expected result of the MC platform. The
information in the target column in Table V indicates that
based on the platform’s expected minimum execution ratio
ei for ∀si ∈ S, the expected execution rounds of the most
executed task is 15083, which is 4913 rounds different from
the least executed task. Take BAS with ϱ2 = 0.1 as an example
to introduce the meaning of the simulation results. After using
it, among all 100 tasks, the actual rounds of the most executed
task is 913231, and the difference between the task with the
least executed one was 905405. There are 10 tasks that satisfy
the platform’s requirement for execution rounds, accounting
for 10% of the total tasks. Table V shows that when ϱ2
increases, the difference in the number of rounds of execution
between the most and the least executed tasks decreases,
which shows that the tasks’ execution rounds become more
balanced. At the same time, the proportion of tasks whose
actual execution rounds reach the values expected by the MC
platform shows an upward trend. Fig. 9 shows that, with ϱ2
increasing, the total profit obtained by the worker after using
BAS will decrease significantly. This decrease is intuitive
because the increase in ϱ2 means that the worker has more
compromised with the MC platform when choosing tasks.

VII. RELATED WORK

In this paper, we pay attention to the design of a MAB-
based strategy to select tasks for a worker when the tasks’
information is unknown. At the same time, possible constraints

Fig. 9. Total profit of BAS with different values of ϱ2.

such as the device budget, traveling-cost-related preference,
and platform balance requirement are considered. We review
related work from two aspects: mobile crowdsensing and
multi-armed bandit.

In the current MC researches, most of them [18]–[20] focus
on profit maximization from the perspective of the platform
while ignoring the entitlement of workers. By contrast, we
focus on maximizing total profit from a worker’s perspective,
which equals the total reward minus the total traveling cost.
After investigation, we find that only a few researches [21],
[22] study the task assignment problem from the perspective
of a worker. For instance, [21] investigates how to maximize
the number of location-based tasks conducted by a worker
under the deadline constraint and proposes algorithms based
on dynamic programming and branch-and-bound strategies.
However, it ignores the unknown reward information and con-
straints in reality, and its practical application is limited. Our
work, which is different from the above, makes a meaningful
supplement to the research of the MC system.

There are lots of studies [23]–[25] that consider the un-
known reward information of sensing tasks. Still, they do not
consider the possible constraints in reality such as the device
budget, the traveling cost, and so on. For instance, [23] investi-
gates how to maximize the task completion through assigning
reliable workers to nearby tasks in spatial crowdsourcing when
tasks arrivals are dynamic and worker reliability is unknown.
And [24] studies how to draw on logistic-regression techniques
from machine learning to learn users’ individual preferences
from past data and puts forward a new perspective on the
payment distribution problem faced by the crowdsensing cam-
paign organizer. Our work considers various constraints from
a worker’s perspective and our proposed algorithms are more
applicable to the actual scene.

We model the unknown task selection problem as a special
MAB problem with multiple constraints to solve the dilemma
between exploration and exploitation. Because of the existence
of the constraints, our unknown task selection problem is
more complicated than the traditional MAB problem, and the
ideas of the commonly used MAB algorithm [26] cannot be
directly applied to solve our problem. Currently, there exist

TABLE V
TASK EXECUTION RESULTS UNDER BAS WITH DIFFERENT VALUES OF ϱ2

metrics target BAS(0) BAS(0.1) BAS(0.5) BAS(1) BAS(10)

execution rounds maximum1 15083 2517283 913231 567068 352128 69712
range(max-min)2 4913 2517261 905405 559242 344302 61886

success rate3 - 1% 10% 39% 43% 44%
1 The number of execution rounds of the most executed task under a certain task selection strategy.
2 The difference in the number of execution rounds between the most and the least executed tasks.
3 The proportion of tasks whose execution rounds reach the expected values of the MC platform.



some studies [27]–[31] about the MAB problem when budget
or switching cost exists. Among them, [27] considers the non-
stochastic multi-armed bandit problem with switching cost
between any pair of actions and gives a tight characterization
of the expected minimax regret in this setting. And [28]
focuses on the development of MAB in the presence of
switching costs and tries to overcome the difficulty of finding
the optimal policy in the bandit problem with switching costs.
The above studies consider the constraint of either the budget
or the switching cost but ignore other constraints which are
possible in reality, such as the device budget and platform’s
balance requirement. Different from the existing studies, we
simultaneously consider the constraints of the device, the
worker, and the MC platform. Further, we propose some
corresponding algorithms to deal with these scenarios.

VIII. CONCLUSION & FUTURE WORK

This paper designs strategy to select tasks from a worker’s
perspective in the MC system. We consider that the reward
information of tasks is unknown, which is in line with our re-
ality. Our problem is modeled as a MAB problem under three
constraints: device budget, traveling-cost-related preference,
and platform balance requirement. We adopt the idea based
on the epoch and design a new task index calculation method
for the constraint conditions. Extensive simulations based
on real-world traces are conducted to verify the significant
performance of our algorithms. In future work, we will try to
analyze the worst regret bounds of the proposed algorithms,
and meanwhile consider maximizing the total profit for a group
of workers while keeping each worker’s profit from being
harmed since there are always multiple workers in a real MC
system (collaboration or competition exists among workers).
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